Seasonal changes in zooxanthellae harbored by zoanthids (Cnidaria, Zoanthidea) from coastal reefs in northeastern Brazil

CRISTIANE F. COSTA1*, ROBERTO SASSI1, KRYSTYNA GORLACH-LIRA2, TODD C. LAJEUNESSE3 & WILLIAM K. FITT4

1Universidade Federal da Paraíba, Departamento de Sistemática e Ecologia, Laboratório de Ambientes Recifais e Biotecnologia com Microalgas (UFPB/DSE/LARBIM), Cidade Universitária, João Pessoa, 58059-900, Paraíba, Brazil,
Corresponding author: cfcosta_ccosta@yahoo.com
2Universidade Federal da Paraíba, Departamento de Biologia Molecular, Laboratório de Biologia Molecular e Ecologia (UFPB/DBM/LABIME) Cidade Universitária, João Pessoa, 58059-900, Paraíba, Brazil
3Pennsylvania State University, Mueller Laboratory, University Park, PA 16802
4University of Georgia, Odum School of Ecology, Bioscience 511, Athens, Georgia 15 30602, USA

Abstract. The zooxanthellae hosted by the zoanthids Palythoa caribaeorum, Protopalythoa variabilis, and Zoanthus sociatus were examined to determine their cell densities, cell diameters, mitotic index, and genetic identity over one year study. The densities of zooxanthellae were significantly higher in Z. sociatus (44.2 ± 22.7 x 10^6 cm^-3) than in P. variabilis (11.24 ± 4.33 x 10^6 cm^-3) and P. caribaeorum (5.6 ± 1.4 x 10^6 cm^-3). The significant differences in the density of zooxanthellae between dry and rainy seasons were observed only for P. caribaeorum with higher densities in rainy season. Zooxanthellae associated with P. caribaeorum showed higher mitotic index (7.8 ± 1.7%) than symbionts of P. variabilis (5.9 ± 10.7%) and Z. sociatus (5.2 ± 0.8%), and higher levels of cell division occurred for this species during dry season. The values of zooxanthellae cell diameters of P. caribaeorum symbionts were significantly higher than for other zoanthids species. The significant difference between zooxanthellae diameters in dry and rainy season was observed only for Z. sociatus. Denaturing gradient gel electrophoresis (DGGE) fingerprinting of the ribosomal internal transcribed spacer 2 showed that Palythoa caribaeorum and Protopalythoa variabilis harbored subclade type C1 Symbiodinium goreaei, while individuals of Zoanthus sociatus harbored predominantly subcladal type A4 Symbiodinium.

Key words: coral reefs, Symbiodinium, dinoflagellates, environmental conditions

Resumo. Mudanças sazonais nas zooxantelas hospedadas por zoantídeos (Cnidaria, Zoanthidea) dos recifes costeiros do nordeste do Brasil. As zooxantelas hospedadas pelos zoantídeos Palythoa caribaeorum, Protopalythoa variabilis e Zoanthus sociatus foram analisadas durante o período de um ano, para determinar a densidade, diâmetro celular, índice mitótico e sua identidade genética. As densidades das zooxantelas foram significativamente maiores em Z. sociatus (44,2 ± 22,7 x 10^6 .cm^-3) do que em P. variabilis (11,24 ± 4,33 x 10^6 .cm^-3) e P. caribaeorum (5,6 ± 1,4 x 10^6 .cm^-3). Diferenças significativas nas densidades de zooxantelas estudadas entre as estações de seca e chuvosa foram observadas apenas para P. caribaeorum com densidades mais elevadas na estação chuvosa. P. caribaeorum teve maiores índices mitóticos de suas zooxantelas (7,8 ± 1,7%) do que P. variabilis (5,93 ± 10,7%) e Z. sociatus (5,2 ± 0,8%), e níveis mais altos de divisão celular ocorreram para esta espécie durante a estação seca. Os diâmetros celulares das zooxantelas de P. caribaeorum foram significativamente maiores do que as outras espécies de zoantídeos estudadas. Diferenças significativas nos diâmetros das zooxantelas analisadas entre as estações de seca e chuvosa foram observadas apenas para Z. sociatus. A eletroforese em gel com gradiente desnaturante (DGGE) do espaçador ribossomal interno transcrito II mostrou que Palythoa caribaeorum e Protopalythoa variabilis abrigam Symbiodinium goreaei pertencente ao subclado C1, enquanto que indivíduos de Zoanthus sociatus abrigam predominantemente Symbiodinium pertencente ao subclado A4.

Palavras chaves: recifes de corais, Symbiodinium, dinoflagelados, condições ambientais
Introduction

Zoanthids (Cnidaria: Anthozoa) are conspicuous representatives of inter-tidal regions and are commonly found on reefs, rocky coastal platforms as well as infralitoral areas in tropical regions (Sebens 1982, Ryland & Babcock 1991). These organisms are characterized by having two rows of tentacles, and are typically colonial, with a single ventral siphonoglyph and detritus encrustation in their mesoglea (Fujii & Reimer 2011). The order comprises diverse families and various genera, among them *Isaurus*, *Palythoa*, *Protopalythoa*, and *Zoanthus*, which can be found in agitated as well as calm waters as polyps typically colonial. The genera *Acrozoanthus*, *Parazoanthus* and *Epizoanthus* are usually found associated with sponges, hydrroids, polychaetes and gorgonians (Mather & Bennett 1993).

Most of the zoanthids host zooxanthellae, symbiotic dinoflagellates (*Symbiodinium*), in their gastrodermal tissues (Steen & Muscatine 1984, Davies 1992, Kemp et al. 2006). These symbionts provide the zoanthids with nutrition through by translocation photosynthetic products (von Holt & von Holt 1968a, 1968b, Parker 1982), necessarily restricting these animals to shallow-water habitats. This relationship offers additional services including the removal of metabolic by-products such as carbon dioxide, ammonia, nitrates and phosphates that then serve as raw materials for their photosynthetic activities (Muscatine 1974). In exchange, the zooxanthellae obtain shelter and protection in the interior of their animal hosts.

The density of zooxanthellae found in tissues of scleractinians corals varies under different environmental conditions (Fitt et al. 2000, Costa et al. 2004a, 2005). Variations in these environmental parameters can influence the stability of the host/symbiont relationship and can lead to the loss of the zooxanthellae or of their photosynthetic pigments (Glynn 1993, Costa et al. 2001a, 2005), resulting in a reduction of density of symbionts (=bleaching) in hosts exposed to extreme environmental conditions (Glynn et al. 2001, Costa et al. 2001a). The bleaching has become increasingly prominent on reefs throughout the world, resulting in vast degradation of coral reefs in the tropics (Glynn 1993, Wilkinson 2008; Amorim et al. 2011) with serious implications for the trophic economy of these ecosystems and for overall marine productivity.

However, for the zoanthids there are no data showing how zooxanthellae vary among different species and almost nothing is known about their relationship with different environmental variables. Kemp et al. (2006) experimentally demonstrated that increasing water temperatures due to a 2005 El Nino in Florida resulted in a loss of zooxanthellae from *Palythoa caribaeorum* Duchassaing & Michelotti, 1860 and bleaching of colonies harboring a combination of *Symbiodinium trenchi* (D1a) and *Symbiodinium goreaui* (C1).

Zoanthids demonstrate extensive latitudinal distributions in Brazil and are encountered in different environments along the coast and on oceanic islands (Rohls de Macedo & Belem 1994, Amaral et al. 2002). The genus *Zoanthus* Lamarck, 1801 and *Palythoa* Lamouroux, 1816 are among the most common representatives in shallow water communities in Brazil (Rohls de Macedo & Belem 1994). Research focusing on this group of zoanthids in Brazil has investigated aspects of their reproduction and taxonomy (Boscolo & Silveira 2005); diseases (Acosta 2001), ecology (Perez et al. 2005), pharmacological applications (Soares et al. 2006), and predation by sea turtles (Stampar et al. 2007).

The present work aimed to characterize the annual cycles of the zooxanthellae hosted by three species of zoanthids (*Palythoa caribaeorum* Duchassaing & Michelotti, 1860; *Zoanthus sociatus* Ellis & Solander, 1786, and *Protopalythoa variabilis* Duerden, 1898) occurring on coastal reefs at Picãozinho, João Pessoa, Paraíba State, Brazil (06°42'05" - 07°07'30"S; 34°48'37" - 34°50'00"W). The harvesting of fragments of each
zoanthids species was made by removing a standard surface area of 4.52 cm² from each colony using a spatula. This area allowed removing approximately 10-20 polyps from *P. caribaeorum*, 20-30 polyps from *Z. sociatus*, and 6 polyps from *P. variabilis*.

To identify the *Symbiodinium* types occurring in zoanthids tissues, fragments (area of 4.52 cm²) of *P. caribaeorum* (n= 4), *Z. sociatus* (n= 7), and *P. variabilis* (n= 5) were also clipped of substrate in May/2008 and preserved in DMSO-salt buffer (20% dimethylsulfoxide, 0.25M EDTA in NaCl saturated water) and stored in 1.5ml microcentrifuge tubes at 4°C (Seutin *et al.* 1991) as described by Baker *et al.* (1997).

For each sampling date the following water parameters were determined: the sea surface temperature - SST (mercury thermometer ± 0.1 °C), the salinity (American Optical Refractometer, model 10419), the quantity of solid material in suspension (gravimetric method), and the amount of dissolved oxygen (method of Strickland & Parsons 1960). Salinity values are based on the Practical Salinity Scale of 1978 (UNESCO 1981). The rainfall indices for the sampling period were obtained from the State Secretary of Water Resources, Paraiba State - SEMARH (www.semarh.pb.gov).

Determination of densities, mitotic index, and cell diameter of zooxanthellae

The volume of each sample collected was determined by the volume displacement technique, using a graduated beaker containing 60ml of filtered seawater. The fragments of *P. caribaeorum* and the polyps of *Z. sociatus* and *P. variabilis* were placed individually into the graduated beaker, the displaced volume was noted and considered as the volume of the polyps or fragments and the sum of volume over the initial volume of the beaker were considered as the total sample volume. Then, the zooxanthellae of each sample were subsequently disassociated from the zoanthids tissues by mechanical maceration and homogenizing.

The extracted material was fixed in Lugol 10% and examined using a Zeiss microscope and Fuchs Rosenthal counting chambers at a total of six subsamples of the homogenized material for each sample. For each sample of the zoanthids species the densities, mitotic index, and diameter of zooxanthellae were determined from four randomly-selected replicates by counting the homogenate in a Fuchs-Rosenthal chamber, using standard microscope. The cell densities were expressed per sample volume (cells.cm⁻³); the mitotic index (%) was determined by counting dividing cells; and the zooxanthellae diameters were measured using a previously calibrated micrometric eyepiece to examine a total of 40 cells per sample each month.

Molecular analyses of zooxanthellae

The isolation of zooxanthellae from the coral tissue and all subsequent DNA extractions, PCR amplifications, and denaturing-gradient gel electrophoresis (DGGE) were done using the protocols of LaJeunesse *et al.* (2003). DNA was extracted using the Wizard DNA preparation protocol (Promega). Between 20 and 40mg of material was placed into 1.5ml micro centrifuge tubes with 250µg of 0.5mm glass beads and 600µl nuclei lysis buffer (Promega) and beaten for 140s at 2400rpm in a Biospec Mini-Beadbeater. The lysis was then incubated with 0.1mg ml⁻¹ proteinase K for 1h at 65°C. 250µl of protein precipitation buffer (Promega) was then added and the extract incubated on ice for 10–15min. After centrifugation for 5min at 15,000g, 550µl of supernatant was transferred to a second 1.5ml tube with 700µl 100% isopropanol and 25µl 3M sodium acetate, pH 5.6. After incubation on ice for 10min, the precipitated DNA was centrifuged and the pellet washed with 70% ethanol. The DNA was centrifuged again for 5min, dried, and redissolved in 95µl H₂O and 5µl of 10x Tris-EDTA (10mM Tris Base, 1mM EDTA Solution, 0.05% Tween 20, pH 9).

Denaturing-gradient gel electrophoresis (DGGE) was used to analyze the ITS2 region of nuclear ribosomal RNA genes (LaJeunesse 2001; LaJeunesse 2002). PCR-DGGE analyses of the ITS2 region were conducted using the forward primer, “IT5Intfor2” (5′- GAATTGCCAGA ACTCCGTG-T3′) (LaJeunesse & Trench 2000), which anneals to a “Symbiodinium-conserved” region in the middle of the 5.8S ribosomal gene, and the highly conserved reverse primer that anneals to the LSU “ITS2CLAMP” (5′- CGCCCCGCGCC GCCCCGCGCC CTCCCCGCG CGCCCCGCC GGGATCCATA TGCTTAAGTT CAGCGGGT-T3′), and ITS-reverse universal primer modified with a 39-bp GC clamp (italicized) (LaJeunesse & Trench 2000). A “touchdown” amplification protocol with annealing conditions 10°C above the final annealing temperature of 52°C was used to ensure PCR specificity. The annealing temperature was decreased by 0.5°C after each of 20 cycles. Once the annealing temperature reached 52°C, amplified samples were loaded onto an 8% polyacrylamide denaturing gradient gel (45-80% urea-formamide gradient; 100% consists of 7M urea and 40% deionized formamide) and separated by electrophoresis for 9.5h at 150V at a constant temperature of 60°C (LaJeunesse 2002). Samples
were run with previously published standards (LaJeunesse 2002).

Statistical analyses

All statistical analyses were carried out using the Statistica7.0 for Windows. The homoscedasticity of the variances of all zooxanthellae parameters analyzed were confirmed utilizing the Levene test. One-way ANOVA was used to analyze means (population densities, mitotic index, and cellular diameter of zooxanthellae), with least significant difference at the 5% level. When ANOVAs detected significant differences between monthly means at the p < 0.05 level, Tukey's post hoc test was used to determine which months differed significantly. The Student t -Test was applied to compare the differences in the symbiont parameters means for the dry and rainy seasons. Pearson's Correlation test was used to determine, whether there was significant correlation between the environmental data and zooxanthellae parameters. All statistical analyses followed Sokal & Rohlf (1983).

Results

Environmental parameters

The monthly rainfall during rainy seasons (June – August 2007; March – June 2008) varied from 134.0 to 590.0 mm, while during dry season (from September 2007 to February 2008) was between 8.0 and 73.0 mm (Figure 1). The sea surface temperature – SST (27-31°C), salinity (35-40) and dissolved oxygen (ca. 5.8-10.8 mg L⁻¹) values fluctuated slightly over all period of study (Fig. 1). The concentration of material in suspension was greatest just after the rainy season of 2007 and during the rainy season in 2008.

![Figure 1. Average values of environmental variables at the Picãozinho reefs, João Pessoa, Paraíba State, Brazil, during the period from June/2007 to June/2008. SST= Sea surface temperature (°C); Sal. = Salinity; O.D.= Dissolved Oxygen (mg L⁻¹); S.M. = Suspended material (mg L⁻¹).](image)

Variations in zooxanthellae density associated with zoanthids species

The densities of zooxanthellae were significantly higher in *Z. sociatus* than in *P. caribaeorum* and *P. variabilis* (df= 147, F= 129.9, p= 0.000). *Z. sociatus* showed the zooxanthellae numbers ranged from 13.8 to 124.1 x 10⁶.cm⁻³, while in *P. variabilis* and *P. caribaeorum* were observed 5.4 to 31.3 x 10⁶.cm⁻³ and 2.6 to 8.9 x 10⁶.cm⁻³, of zooxanthellae, respectively (Table I).

The significant differences of zooxanthellae density between samples collected in different months were observed for all species studied. The densities of *P. caribaeorum* zooxanthellae were lower in September 2007 and February 2008 than in April, May and June 2008 (df= 37, F= 3.66, p= 0.001) (Fig. 2). The lower numbers of zooxanthellae in *P. variabilis* were observed at July, August and October 2007 than in June 2008 (df= 37, F= 2.42, p= 0.019). *Z. sociatus* showed lower counts of zooxanthellae in June, July and August 2007 than in January and June 2008 (df= 37, F= 4.84, p= 0.000).
Table I. Average estimates of densities, mitotic index, and cell diameter of zooxanthellae associated with *Palythoa caribaeorum* (Pc), *Protopalythoa variabilis* (Pv), and *Zoanthus sociatus* (Zs) at Picãozinho reefs, João Pessoa, Paraíba State, Brazil, analyzed during the period from June 2007 to June 2008.

<table>
<thead>
<tr>
<th></th>
<th>Density (cells x 10^6 cm^-3)</th>
<th>Mitotic index (%)</th>
<th>Cell diameter (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pc</td>
<td>Pv</td>
<td>Zs</td>
</tr>
<tr>
<td>Mean</td>
<td>5.62^a</td>
<td>11.24^a</td>
<td>44.20^b</td>
</tr>
<tr>
<td>SD (±)</td>
<td>1.45</td>
<td>4.33</td>
<td>22.75</td>
</tr>
<tr>
<td>Minimum</td>
<td>2.60</td>
<td>5.40</td>
<td>13.80</td>
</tr>
<tr>
<td>Maximum</td>
<td>8.90</td>
<td>31.30</td>
<td>124.10</td>
</tr>
<tr>
<td>Valid N</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Mean values marked with same letter do not differ significantly (p>0.05)

Among the species studied only *P. caribaeorum* showed significant differences in the density of zooxanthellae between the dry and rainy seasons (t = 2.779, p= 0.007) (Fig. 3). This species showed higher zooxanthellae densities during the rainy season of 2008 than in dry season.

The density of all species studied demonstrated weak negative correlation with sea surface temperature and weak positive correlation with rainfall (Table 2). Zooxanthellae density of *Palythoa caribaeorum* showed also weak negative correlation with salinity.

Variations of mitotic index and cell diameters of zooxanthellae

Zooxanthellae associated with *Palythoa caribaeorum* showed significant higher mitotic index than symbionts of *Protopalythoa variabilis* and *Zoanthus sociatus* (F= 26.958; p = 0.000) (Table I). The mitotic index of zooxanthellae associated with the three zoanthids species showed significant fluctuations throughout the year (Fig. 4). *P. caribaeorum* showed significant lower values of mitotic index in June 2007 (2.8%) than in other months (6.3 - 9.2%), except for July 2007 (5.4%) (df= 37, F= 11.277, p= 0.000). *P. variabilis* showed significant lower mitotic index in November and December 2007 (3.3% and 1.5% respectively) than in August 2007 (8.8%) (df= 37, F= 3.534, p= 0.000), and *Z. sociatus* showed significant higher values of this parameter in September 2007 (6.9%) than in all other months (Fig. 4). The mitotic index of zooxanthellae associated with *P. caribaeorum* and *Z. sociatus* showed weak positive correlation with sea surface temperature and dissolved oxygen. The mitotic index of zooxanthellae hosted by *P. variabilis* showed weak negative correlation with salinity and positive correlation with dissolved oxygen (Table II).
Figure 3. Average cell densities (±Standard error) of the zooxanthellae associated with zoanthids from the reefs at Picãozinho, João Pessoa Paraíba State, Brazil, analyzed during the dry and rainy seasons of the period from June 2007 to June 2008. (Zs= Zoanthus sociatus; Pc= Palythoa caribaeorum; Pv= Protopalythoa variabilis; *= significant differences).

Table II. Correlation matrix between environmental parameters and variables of zooxanthellae associated with Palythoa caribaeorum (Pc), Protopalythoa variabilis (Pv), and Zoanthus sociatus (Zs) at Picãozinho reefs, João Pessoa, Paraíba State, Brazil, analyzed during the period from June 2007 to June 2008.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cell density</th>
<th>Mitotic index</th>
<th>Cell diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pc</td>
<td>Pv</td>
<td>Zs</td>
</tr>
<tr>
<td>Temperature</td>
<td>-0.45</td>
<td>-0.54</td>
<td>-0.51</td>
</tr>
<tr>
<td>Salinity</td>
<td>-0.40</td>
<td></td>
<td>-0.32</td>
</tr>
<tr>
<td>Monthly rainfall</td>
<td>0.63</td>
<td>0.38</td>
<td>0.32</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td></td>
<td>0.51</td>
<td>0.35</td>
</tr>
<tr>
<td>Suspended material</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The significant differences in the mitotic index of zooxanthellae between dry and rainy seasons were observed only for P. caribaeorum (df= 48, t= -3.7121, p= 0.0005), that showed higher levels of cell division during dry season (Fig. 5).

The values of cell diameters of Palythoa caribaeorum symbionts ranged from 9.94μm to 11.32μm, and were higher than for other zoanthids species studied (df= 117, F= 13.946, p= 0.000; Table I). The significant difference between zooxanthellae diameters in dry and rainy season was observed only for Z. sociatus (df= 38, t= 3.2322, p= 0.002, Fig. 6), but no variations of this parameter were observed between monthly samples for the all species studied (p> 0.05). The zooxanthellae cell diameter of Z. sociatus was found to be weakly positive correlated with salinity and dissolved oxygen (Table II).
Zooxanthellae clades associated with zoanthids species

Two divergent groups of zooxanthellae corresponding to Clades A and C were identified in zoanthids species. ITS2-DGGE fingerprinting of Symbiodinium populations harbored by P. caribaeorum and P. variabilis identified Symbiodinium goreaui C1 (sensu LaJeunesse 2001). Most of the Z. sociatus specimens analyzed harbored primarily subcladal type A4 Symbiodinium (n= 5), however one individual contained a mixed population of S. goreaui C1 and subcladal type A3.
Discussion

Zooxanthellae densities have often been observed to be inversely related to sea surface temperatures, and this observation has been widely used to explain bleaching episodes affecting zooxanthellate corals, hydrocorals, and zoanthids (Fitt et al. 1993, Glynn et al. 2001, Saxbay et al. 2003, Costa et al. 2005, Kemp et al. 2006). There is good evidence, however, that synergistic stress factors such as temperature, sedimentation processes (Philipp & Fabricius 2003), coastal nutrification (Philipp & Fabricius 2003, Philipp & Fabricius 2003), rainfall indices (Costa et al. 2004a, 2005; Downs et al. 2009; Amorim et al. 2011), fluctuations in the optical quality of the water, and other environment factors related to anthropogenic activities (Fagoonee et al. 1999) acting jointly can influence bleaching among cnidarians.

In the present study, temperature effects were only apparent in Palythoa caribaeorum, which demonstrated significant reductions in zooxanthellae densities during the summer. The densities of the zooxanthellae in Zoanthus sociatus were greater during this same period of elevated temperatures, however, suggesting the influence of other factors in regulating the concentrations of these symbionts in host tissues.

All of the species studied here colonize substrates that lay exposed for long periods of time during certain low tides, and are thus subjected to high temperatures, strong solar radiation levels that favor desiccation, and increased sedimentation that can cause smothering and death of coral polyps, shading, and tissue necrosis death (Erftemeijer et al. 2012). As this intermittent stress favors desiccation, the cnidarians are obliged to produce more photoprotective mucus, which suggests that they must maintain high metabolic levels under extreme environmental conditions. Zoanthids are also subject to predation and sedimentation under these conditions (Mendonça et al. 2008; Francini-Filho & Moura 2010), so that multiple stress factors can act upon them simultaneously.

Our results indicated that zooxanthellae sizes and densities are inversely related variables. Palythoa caribaeorum, the most conspicuous species in the study area, has very large zooxanthellae, although these symbionts are present at lower densities than those found in Zoanthus sociatus and Protopalythoa variabilis. The same situation has been observed with the coral Siderastrea stellata, the most abundant species on the coastal reefs of Paraíba State, which also has large zooxanthellae but at lower densities than other corals such as Mussismilia harttii and Mussismilia hispida, both endemic to Brazil (Costa et al. 2005).

Changes in the numbers of zooxanthellae reflect changes in cell division rates, but specific responses to environmental factors will vary from host to host. The observed differences in the mitotic indices among the species studied here indicated different responses to external factors affecting the homeostasis of the symbiotic relationships between these organisms (Cervino et al. 2003, Hoegh-
Guldberg 1994) – so that increasing or decreasing cell division rates act as adjustment mechanisms to environmental factors, maintaining dinoflagellates densities within ranges most beneficial to the host (Wilkerson et al. 1988).

Stress situations can result in the expulsion or death of zooxanthellae (Kemp et al. 2006), which will then increase the cell division rates among the remnant populations – demonstrating a form of resilience in the relationship between endosymbionts and their hosts. As symbiosis is essential to guarantee the quality of life of zooxanthellate cnidarians, it can be inferred that the costs of maintaining this relationship is quite high and that the physiological and reproductive equilibrium of zooxanthellae must occur in consonance with the interests of the host.

These homeostatic mechanisms also have a genetic component. Certain host coral species are dominated by particular types of Symbiodinium, whose prevalence appear to be associated with growth rates, nutrient capture, photosynthetic efficiency, and the capacity for photo-acclimation – attributes that can affect species distributions and competition (LaJeunesse 2002).

The subcladal types of Symbiodinium found in Palythoa caribaeorum and Protopalythoa variabilis are similar to those found in Caribbean species of Palythoa and Protopalythoa (the host-generalist subcladal type C1, Symbiodinium goreaui; LaJeunesse 2002); the identification of subcladal type A4 as the primary symbiont of Z. sociatus was unusual, however, since this subclade occurs jointly in this host with the subcladal types A3, B1, and C1 (LaJeunesse 2002).

Other reports have demonstrated that clade A4 shows no strict host - specificity, as it has also been reported in Zoanthus sansibaricus (Reimer et al. 2007) and the reef-building corals Montastraea franksi (Garren et al. 2006) and Acropora spp. (LaJeunesse 2002). Reimer et al. (2011) reported that most specimens of several species of zoanthids (Isaurus tuberculatus Gray, 1828; Zoanthus sansibaricus Carlgren, 1900; Zoanthus kuroshio Reimer, Ono, Iwama, Takishita, Tsukahara & Maruyama, 2006; Palythoa mutuki Haddon & Shackleton 1891) from Ogawara Island maintained symbiotic relationships with Symbiodinium clade C, while only one specimen of Z. kuroshio was observed to host Symbiodinium clade A1.

Hill et al. (2011) found clade A zooxanthellae in Zoanthus sociatus from Jamaica, in various species of sponges living on Caribbean reefs, and in one sponge species from Pacific reefs, and Symbiodinium clade A was the most common type found in Cliona aprica, C. caribbea, C. tenuis, and C. laticavicola in the Caribbean (Granados et al. 2008). Symbiotic relationships with Symbiodinium clade A were also observed in ten species of scleractinian coral, sea anemones, and scyphomedusae in the Mediterranean Sea, while only one species of sea anemone (Bunodeopsis stramosa) harbored clade B, indicating the common occurrence of clade A in the Mediterranean region (Visram et al. 2006).

The prevalence of clade C in three zoanthid species reinforces its generalist character and abundance at tropical latitudes (Baker 2003). The additional presence of subclades A3 and A4 in Zoanthus sociatus indicates that this species has the flexibility to select its zooxanthellae, making it (in the view of Rowan et al. 1997 and Glynn et al. 2001) one of the zoanthids most resistant to bleaching on the reefs at Picãozinho (with clade A>B>C>D).

Acknowledgements
The authors would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico and Tecnologico) for their financial support (Process: 485550/2006-7 and 479979/2007-3) as well as Thaise Priscila Bezerra da Silva for her invaluable help during the field collections and laboratory analyses.

References

Hexacorallia) and their *Symbiodinium* (Dinophyceae). *Systematics and Biodiversity*, 9(2): 133-143.

Received January 2013
Accepted May 2013
Published online December 2013

Pan-American Journal of Aquatic Sciences (2013), 8(4):253-264