Scientific Note

Gastrointestinal helminths of the Argentine side-necked turtle, *Phrynops hilarii* (Duméril & Bibron, 1835) (Testudines, Chelidae), in south Brazil

FABIANA F. BERNARDON¹*, ANA LUISA VALENTE¹ & GERTRUD MÜLLER¹

Universidade Federal de Pelotas, Instituto de Biologia, Departamento de Microbiologia e Parasitologia, Programa de Pós-graduação em Parasitologia, Campus universitário s/nº CEP 96010-900, Capão do Leão, Rio Grande do Sul, Brasil.*Corresponding author: fabifedatto@gmail.com

Abstract. Parasitological information on the Argentine side-necked turtle, *Phrynops hilarii*, is scarce. In this paper, we report, for the first time, the occurrence of the nematodes *Spiroxys* sp., *Camallanus* sp. and the trematode *Cheloniodiplostomum* sp. parasitizing *Phrynops hilarii* in south Brazil.

Keywords: endoparasite, chelonian, *Spiroxys* sp., *Camallanus* sp., *Cheloniodiplostomum* sp.

Phrynops hilarii (Duméril & Bibron, 1835), known as Argentine side-necked turtle, occurs in Brazil, Uruguay and northern Argentina (Lema & Ferreira 1990, Iverson 1992, Vanzolini 1995, 1997). In the state of Rio Grande do Sul, Brazil, it is considered the second most abundant species of turtle (Bujes & Verrastro 2009). This species has wide diet diversity, and is considered generalist with a broad trophic niche. Food items vary according to the season including crustaceans, hemipterans, aquatic coleopterans, gastropods, fishes, and others (Alcalde et al., 2010).

The knowledge on turtle’s helminth biodiversity in South America is due largely to specific records made in Uruguay and Brazil (Mañé-Garzón & Gil 1961 a, b, c, Freitas & Dobbin 1962). The aim of this study was to investigate the occurrence of gastrointestinal helminths in *P. hilarii* from urban lakes in south Brazil.

Stomach and intestines of seven Argentine side-necked turtles, *P. hilarii*, from artificial lakes in the municipality of Pelotas, state of Rio Grande do Sul, Brazil (31° 45’ 24.0” S; 52° 21’ 30.0” W, and 31° 46’ 12.34” S; 52° 20’ 25.84” W) were examined. After capturing for cleaning the lakes, about 70 turtles were sent to the Núcleo de Reabilitação da Fauna Silvestre and Centro de Triagem de Animais Silvestres of the Universidade Federal de Pelotas (NURFS-CETAS/UFPel), where the animals used in this study died while they were kept in quarantine. The animals were necropsied, their organs were removed and kept frozen at -20°C until processing for parasitological purposes.

The stomach, small and large intestine were opened and washed under running water in a 150 µm sieve to separate the helminths. The material retained on the sieve and the mucous membranes were inspected under a stereomicroscope. Helmiths were fixed in AFA solution and preserved in 70º GL alcohol. Nematodes were clarified in lactophenol and trematodes were stained with carmine according to the techniques of Amato & Amato (2010). Prevalence, mean abundance, and mean intensity were calculated according to Bush et al. (1997). The
specimens were deposited in the Helminthological Collection of the Laboratório de Parasitologia de animais silvestres do Instituto de Biologia, Universidade Federal de Pelotas (nº 303, 318, and 319).

The nematodes and trematodes were identified based on morphological and morphometric characteristics as belonging to the genera Spiroxys (Nematoda, Gnathostomatidae) (n=24), Camallanus (Nematoda, Camallanidae) (n=17) according to Chabaud 2009 and Cheloniodiplostomum (Trematoda, Proterodiplostomidae) (Niewiadomska 2002) (n=177). Parasitological parameters, prevalence, mean abundance, mean intensity, and the sites of infection are shown in Table I.

Table I. Parasitological indices of helminths of *Phrynops hilarii* collected from urban artificial lakes in the municipality of Pelotas, Rio Grande do Sul, Brazil

<table>
<thead>
<tr>
<th>Helminths</th>
<th>Sites of infection</th>
<th>Prevalence (%)</th>
<th>Mean abundance (±SD)</th>
<th>Mean intensity (±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nematoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiroxys sp.</td>
<td>Stomach and SI</td>
<td>28.57</td>
<td>3.43 ± 7.45</td>
<td>12 ± 11.34</td>
</tr>
<tr>
<td>Camallanus sp.</td>
<td>Stomach and SI</td>
<td>28.5</td>
<td>2.43 ± 5.59</td>
<td>8.5 ± 9.19</td>
</tr>
<tr>
<td>Trematoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheloniodiplostomum sp.</td>
<td>Stomach and SI</td>
<td>100.00</td>
<td>25.29 ± 31.30</td>
<td>25.29 ± 27.01</td>
</tr>
</tbody>
</table>

SI = small intestine
SD = standard deviation

The knowledge of the helminth parasites of the Argentine side-necked turtle is limited to some studies conducted in Uruguay and in Brazil. The trematode species known to infect that host include Acanthostomum brauni Mañé-Garzón & Gil 1961, A. scyphocephalum (Braun 1901) (Digenea, Cryptogonimidae, Acanthostominae) and Prionosoma phrynopsis Mañé-Garzón & Gil 1961 (Digenea, Echinostomidae) (Mañé-Garzón & Gil 1961a); and four species of the genus Telorchis, Lühe, 1900 (Digenea, Telorchidae): T. birabeni Mañé-Garzón & Gil 1961 (Mañé-Garzón & Gil 1961b), T. platensis, Mañé-Garzón & Gil 1961, T. devincenzii Mañé-Garzón & Gil 1961 and T. productus Mañé-Garzón & Gil 1961 (Mañé-Garzón & Gil 1961c) in Uruguay.

In northeastern Brazil (Recife city), Freitas and Dobbin (1962) reported the necropsy of two turtles *Phrynops geoffroana geoffroana* (Schweigger 1812); they found in their small intestine a new species, which they termed Prionosomoides scalaris (Digenea, Echinostomatidae), also proposing a new genus, Prionosomoides, and including in this new genus Prionosoma phrynopsis, previously described by Mañé-Garzón & Gil 1961a.

The nematodes Spiroxys sp. and Camallanus sp., and the trematode Cheloniodiplostomum sp. are registered parasitizing Phrynops hilarii for the first time in Brazil, which represents a new host for these helminths. A satisfactory identification and taxonomic description to the species level was not possible because the material remained frozen for some time, what caused some changes in morphological structures of interest in taxonomic specimens.

Acknowledgments

We thank the Center for Wildlife Rehabilitation and Center and Screening of Wild Animals, Federal University of Pelotas (NURFS-CETAS/UFPel) for kindly donating the material to the Laboratory of Parasitology of Wild Animals, so that the work could be done.

References

Gastrointestinal helminths of *Phrynops hilarii*

Received May 2012
Accepted September 2012
Published online March 2013