Size-related changes in diet of the slipper sole *Trinectes paulistanus* (Actinopterygii, Achiridae) juveniles in a subtropical Brazilian estuary

RIGUEL FELTRIN CONTENTE¹, MARINA FREITAS STEFANONI² & HENRY LOUIS SPACH²

¹Universidade de São Paulo (USP), Instituto Oceanográfico (IOUSP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, PC 05508-120, São Paulo, Brazil. Email: riguel.contente@gmail.com
²Universidade Federal do Paraná (UFPR), Centro de Estudos do Mar (CEM), Avenida Beira-mar s/n, Pontal do Paraná, PC 83235-000, Paraná, Brazil.

Abstract. Size-related changes in the diet of the slipper sole *Trinectes paulistanus* juveniles were described based on the stomach content analysis of 105 specimens (9 – 55 mm standard length) collected in an oligohaline habitat of the Paranaguá Bay estuarine complex (southern Brazil). From multivariate analyses, an ontogenetic diet shift was detected at about 25 mm standard length. Chironomidae larvae were the most important prey for the smaller fish (< 25 mm), and the tanaid *Kalliapseudes schubarti*, for the larger ones (> 25 mm). Results of feeding strategy analyses revealed a trophic specialization toward a single prey and, consequently, the trophic niche was narrow within each size class. We discussed such size-related dietary patterns in light of ontogenetic changes in mouth gape size.

Key words: feeding habits, population feeding specialization, Paranaguá estuarine complex, flatfish, *Leptocheirus spinicoxa*

Introduction

The Achiridae are moderately small flatfishes which are principally marine and estuarine, although some species occur in freshwater (Munroe 2002). The slipper sole, *Trinectes paulistanus* (Miranda-Ribeiro, 1915), is a small (max 180 mm standard length - SL), marine demersal species that is widely distributed along the Eastern South American coast, from Colombia to southern Brazil (Munroe 2002). It exhibits negligible commercial importance and is commonly caught and discarded as by-catch in crustacean trawl fisheries operating in estuaries and shallow coastal areas (Munroe 2002). *T. paulistanus* larvae and juveniles appear to occupy shallow estuarine areas (Bonecker et al. 2007, Michele & Uieda 2007) and adults, main channels of estuaries (Maciel 2001), bays (Azevedo et al. 2007), beaches (Godefroid et al. 2004), and inner shelf habitats (Santos 2007).

Michele & Uieda (2007) found *T. paulistanus* juveniles feeding on insects, polychaetes, isopods, and amphipods in a
southeastern Brazilian mangrove river. Despite abundant in estuaries of the subtropical Brazil (Maciel 2001), the species’ biology and ecology are poorly described. Further, there is no information on ontogenetic dietary shifts, which may reduce intra-specific competition for food resources especially when various size classes occur at same general habitat (Ward-Campbell & Beamish 2005). Changes in gape size facilitate intra-specific partitioning of food as gape constraints the size of the ingested prey (Ward-Campbell & Beamish 2005).

Within size-structured fish populations, individual specialization may be a conspicuous phenomenon (Svanback & Persson 2004) and thus is necessary to be estimated for characterizing the feeding niche width precisely (Bolnick et al. 2003). This study deals with the diet of T. paulistanus juveniles of an oligohaline habitat within the estuarine complex of Paranaguá Bay (southern Brazil). Our specific goal is to examine size-related shifts in diet composition in light of the mouth dimensions changes and individual trophic specializations.

Materials and Methods

The study took place in the upper estuary of Guaraguaçu River, a large tributary located on the southern part of the Paranaguá Bay estuarine complex, Brazil (Fig. 1). Three continuous stations within the river’s oligohaline zone were selected for sampling (Fig. 1). Sampling was monthly conducted from February-2006 to April-2006. Fish were caught by a 15 m x 2 m seine-net with a uniform mesh size of 5 mm. During each survey, one 20 m-tow was performed parallel to the river’s course at each station, fishing to depth of ca. 1.5 m. Fish were stored and transported on ice to the laboratory.

In laboratory, the vertical (MV) and horizontal (MH) mouth openings (0.1 mm - using a caliper) and SL (mm) were taken of each fish before its stomach was removed and preserved in 10% formalin. Stomach fullness was estimated visually on a scale of 1 (10% full) to 10 (100% full; Sarre et al. 2000). Prey items from each stomach were identified to the lowest taxonomic level and quantified by: (1) percentage volume (%V - by spreading all stomach contents in counting cell chamber with uniform depth and then calculating area of prey item \(j \) / total item area \(x \) 100; modified from Hellawell & Abel 1971); and (2) percentage abundance (%N) as number of prey item \(j \) / total number of prey \(x \) 100 (Hyslop 1980). To preserve individual variation, stomach contents were not pooled in the following analyses (Ley et al. 1994).

A group average hierarchical cluster analysis, using the Bray-Curtis similarity index, assessed size-related variations in diet. It based on individual stomach content data, which were described by %V values only. Due to heterogeneous size range of the diet components, %N values are less suitable in similarity analysis (Baldó & Drake 2002) and thus were not used. %V values were root-square transformed prior analysis. Analysis of similarity (ANOSIM; Clarke & Warwick 1994) were computed for differences in diet between resultant clusters (size groups) and month of captures.

To synthesize the size group diet information, the frequency of occurrence (%F - percentage of fish containing a given prey item \(j \)), the mean %V and mean %N values, and the index of relative importance \(IR_ j = (%N_j + %V_j) \times %F_j \) were computed for each prey item (Hyslop 1980). The Costello graphical method (Costello 1990), modified by Amundsen et al. (1996), was
employed to look for general trends in feeding behavior of *T. paulistanus*. To identify individual specialization, the proportion similarity index was calculated following Svanback & Persson (2004): \[PS_i = \sum_j \min(p_{ij}, q_{ij}) \], where \(p_{ij} \) is the proportion volumetric of prey item \(j \) in the individual \(i \)'s diet and \(q_{ij} \) is the volumetric contribution of \(i \) in the diet of the population as a whole. For individuals that specialize on a single diet item \(j \), \(PS_i \) takes on the value \(q_{ij} \). For individuals that consume resources in direct proportion to the population as a whole, \(PS_i \) will equal 1 (Svanback & Persson 2004). The overall prevalence of individual specialization (\(IS \)) in the population can be expressed by the average \(PS_i \) value: \(IS = 1/n \sum_i PS_i \) (Svanback & Persson 2004). Note that if all individuals have the same diets then \(IS \) will be 1, indicating no individual specialization, while values close to 0 indicate strong individual specialization (Svanback & Persson 2004).

Finally, mouth dimensions (MH and MV) were regressed against SL (either linearly or log-linearly, based on the \(r^2 \) value) (Karpouzi & Stergiou 2003). One-way ANOVA tested the association between SL and dependent variables.

Results

Caught fish ranged from 9 to 55 mm SL (mean size = 26.9 mm SL), with the best represented class being the 15-25 mm SL (Fig. 2). Of the 105 individuals caught, 88 (83.8%) contained food in the stomachs and were used in diet analysis.

![Size-frequency distribution of *T. paulistanus*, collected in the Guaraguáçu River Estuary. SL = Standard Length](image)

Figure 2. Size-frequency distribution of *T. paulistanus*, collected in the Guaraguáçu River Estuary. SL = Standard Length

Month of capture did not appear to have significant effect on diet compositions (ANOSIM, \(R = 0.106, p > 0.09 \)).

Two size groups with similar dietary pattern were identified (Fig. 3): group 1 (n = 38) pooled almost all fish smaller than 26 mm SL, and group 2 (n = 50), mainly those larger than 25 mm SL. The diet composition of the groups were significant different (ANOSIM, \(R = 0.544, p < 0.01 \)) and the mean stomach fullness of both was relatively high and similar (> 6, Table I). According to the diet indices (Table I), and the feeding strategy diagram (Fig. 4a), chironomid larva was the major prey within the group 1, followed by the tanaid *Kalliapseudes schubarti*. Some individuals specialized on the latter and also another tanaid *Sinelobus stanfordi* (Fig. 4a). The diets of the larger fish (group 2) were by far dominated by *K. schubarti*, and secondly by chironomids and polychaetes on which some fish specialized (Fig. 4b and Table I). Remaining prey items can be considered occasional.

Within each size group, the predominance of high \(PS_i \)-values (Fig. 5), the high \(IS \)-values (\(IS_{GROUP1} = 0.68, IS_{GROUP2} = 0.76 \)), and a restrict point in the upper right of the diagram (Fig. 4a, b) represent a predator population’s specialization (thus a low individual specialization) as well as a population’s narrow niche. MH related log-linearly (\(\ln MH = \ln1.1072SL - 3.1667, r^2 = 0.84 \)) and MV linearly (\(MV = 0.0965SL - 0.0247, r^2 = 0.92 \); Fig. 6) with SL. The slopes of the regressions were all statistically significant (\(p < 0.0001 \)).

Discussion

Comparing our data to those of other areas reveals that benthivory appears to be common in *T. paulistanus*, despite some differences in terms of prey composition. While it feeds on polychaetes, amphipods, and aquatic insects in the Rio da Fazenda Estuary (Michele & Uieda 2007), in the Sepetiba Bay its diet is dominated by polychaetes (Guedes & Araújo 2008). The congeneric *T. maculatus* also consumes mainly benthic invertebrates, such as polychaetes and amphipods (Derrick & Kennedy 1997). In the oligohaline zone of the Guaraguáçu, *T. paulistanus* preyed heavily on chironomids and *K. schubarti*, probably due to their high availability. Chironomid larvae seem to be common in low-salinity upper estuaries (Corrêa & Araújo 2008) and *K. schubarti* is an abundant macrofauna component in the Paranaaguá Bay (Lana et al. 1989; Lana & Guiss 1991).

Within each size group, almost all individuals fed mostly upon a dominant prey taxon (either *K. schubarti* or chironomid larvae), some specialized on specific items, and few included small proportions of other prey types occasionally. Such a strong feeding specialization of the groups resulted in narrow trophic niche widths, which differ
from those with high within- or between-phenotype component (Amundsen et al. 1996). Narrow trophic niche was also reported by the population from Sepetiba Bay (Guedes & Araújo 2008).

The observed size-related diet shift may be related to ontogenetic shifts in gape size that grew consistently with increasing body size in *T. paulistanus*. Ontogenetic gape increase (among other factors) allows growing predators to ingest more elusive, larger prey successfully (Karpouzi & Stergiou 2003; Ward-Campbell & Beamish 2005). In fact, chironomid larva is a small, slow-moving prey, while *K. schubarti* is relatively larger and more elusive, despite its tubicolous life style (Lana & Guiss 1991). Similar predator-prey size relationships also were detected in other flatfish (Scharf et al. 2000) and other estuarine fishes (Scharf & Schlicht 2000; Contente et al. in press).

Figure 3. Hierarchical cluster analysis based on percentage by volume (%V) of the *T. paulistanus* individual diets from the Guaraguaçu River Estuary. ● = fish > 25 mm standard length; x = fish ≤ 25 mm standard length.

Figure 4. Relationship between prey-specific abundance (*P*) and frequency of occurrence (%*F*) of prey items in the diet of *T. paulistanus* size groups, collected in the Guaraguaçu River Estuary. [(a) ≤ 25 mm standard length group; (b) > 25 mm standard length group]. (c) explanatory diagram modified of Amundsen et al. (1996).
Table I. Prey items of two *T. paulistanus* size groups from the Guaraguacu River Estuary. SL = Standard Length, %F = frequency of occurrence, %V = percentage by volume, %N = numeric abundance, and %IRI = index of relative importance. Mean stomach fullness also is given.

<table>
<thead>
<tr>
<th>Prey item</th>
<th>≤25 mm SL group size</th>
<th>>25 mm SL group size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%F</td>
<td>%V</td>
</tr>
<tr>
<td>Insecta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae larva</td>
<td>89.29</td>
<td>78.75</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalliapseudes schubarti Mañe-Garzon, 1969</td>
<td>35.71</td>
<td>17.53</td>
</tr>
<tr>
<td>Sinelobus stanfordii (Richardson, 1901)</td>
<td>3.57</td>
<td>0.74</td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammaridea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptocheirus spinicosa Valerio-Berardo & Wakabara, 2003</td>
<td>3.13</td>
<td>1.24</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>1.79</td>
<td>0.07</td>
</tr>
<tr>
<td>Copepoda</td>
<td>8.93</td>
<td>0.53</td>
</tr>
<tr>
<td>Polychaeta</td>
<td>5.36</td>
<td>2.18</td>
</tr>
<tr>
<td>Plant debris</td>
<td>1.79</td>
<td>0.20</td>
</tr>
<tr>
<td>Mean stomach fullness (mean ± SD)</td>
<td>6.5 ± 0.28</td>
<td>6.1 ± 0.27</td>
</tr>
</tbody>
</table>

Considering the overlap between coexisting individuals of different sizes and such abundant prey, smaller fish may have restricted themselves to smaller prey (chironomids) due to gape limitations, while larger ones preferred more profitable, larger prey (*K. schubarti*). This narrows the feeding niche in each ontogenetic stage, which may be a potential mechanism of intra-specific partitioning of food. Such a hypothesis must be tested by future investigations taking into account prey size, prey abundance-availability, and predator’s preference through size groups. Moreover, for a complete knowledge of the trophic ecology of *T. paulistanus*, future studies should focus on the description of ontogenetic patterns beyond the limits examined in this study.

Figure 5. Frequency distribution of proportion similarity (PSI) index values of *T. paulistanus* from the Guaraguacu River Estuary.

Figure 6. Vertical (MV - ○) and horizontal (MH - ●) mouth opening relation with standard length (SL) of *T. paulistanus* from the Guaraguacu River Estuary.

Finally, this is the first record of *Leptocheirus spinicosa* (Corophiidae) (Table I) for the southern Brazilian coast. It has been previously only reported in the northeastern coast (Valerio-Berardo & Wakabara 2003). Due to high mobility, fish may display a higher prey detection rate than conventional samplers (Raddum & Fjellheim 2003) and this may lead to new records of taxa not detected in previous fauna surveys (Fjellheim et al. 2007).

Acknowledgments

We would like to thank three anonymous referees for valuable comments, IAP (Instituto Ambiental do Paraná) for the research license and CNPq for financial support through a master grant to R. Contente and M. Stefanoni and a productivity scholarship to H. Spach.
References
Michele, O. D. A. & Uieda, V. S. 2007. Diet of the ichthyofauna associated with marginal vegetation of a mangrove forest in

Received August 2008
Accepted December 2008
Published online March 2009