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Abstract. Stress in fish has been widely studied. Cortisol and glucose are two of the most 
common stress indicators. In spite of the extended use of these indicators and their acceptance, 
some inconsistencies have been reported in the results of several experimental studies, much of 
them associated to undefined and uncontrolled variables which may alter the response in secretion 
of cortisol and glucose into the bloodstream. Most of those factors are not considered as direct 
stressors but have an effect on the intensity of the response which makes them a source of error. 
Some of those factors are related to metabolic changes in the organisms as an adaptation or 
acclimation mechanism; other are extrinsic to the fishes; other sources of error are caused 
unconsciously by the researcher during manipulation or due to inadequate control of variables, and 
may lead to intrinsic changes. The present paper is a contribution on the review of the most 
evident factors that may affect results when using cortisol and/or glucose as fish stress indicators. 
Some suggestions to avoid or minimize erroneous results in such investigations are also presented. 
 
Keywords: Blood chemistry, blood parameters, blood sugar, biochemical responses, corticoids, 
stress indicators. 
 
Resumen. ¿Cortisol y glucosa: fiables indicadores de estrés de los peces? El estrés en los peces 
ha sido ampliamente estudiado. El cortisol y la glucosa son dos de los indicadores de estrés más 
comunes. A pesar del extenso uso de estos indicadores y su aceptación, se han reportado algunas 
inconsistencias en los resultados de muchos experimentos, algunos de ellos asociados a variables 
que no son controladas, las cuales pueden alterar la respuesta de secreción de cortisol y glucosa. 
Muchos de esos factores no son considerados estresores directos, pero tienen un efecto en la 
intensidad de respuesta, lo cual los vuelve una fuente de error. Algunos de esos factores están 
relacionados con cambios metabólicos en los organismos, como un mecanismo de aclimatación o 
adaptación; otros son extrínsecos a los peces y otros más son causados inconscientemente por el 
investigador mediante la manipulación o inadecuado control de variables, lo cual puede provocar 
cambios intrínsecos. El presente manuscrito es una contribución en la revisión de los factores más 
evidentes que pueden afectar los resultados cuando se usa cortisol y/o glucosa como indicadores 
de estrés en peces y a su vez se mencionan algunas sugerencias para evitar o minimizar resultados 
erróneos. 
 
Palabras clave: Azúcar sanguínea, corticoides, indicadores de estrés, parámetros sanguíneos, 
química sanguínea, respuestas bioquímicas. 
 

Introduction 
 

In recent years the concept of stress as 
applied to fish has awaked the interest among 

scientists dedicated to the research of environmental 
influences on health (Barreto et al. 2006). 

There are discrepancies from the different 
authors about the stress definition. One of the most 
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accepted is described as chemical and physical 
factors causing body reactions that may contribute to 
disease and-or death (Rottmann et al. 1992). Stress 
is also known as “the nonspecific response of the 
body to any demand made upon it” (Selye 1973). 
Although there are several definitions, most of them 
refer to an “altered state” which increases the energy 
demand. According to Selye (1985) stress should be 
divided into two phases: “eustress” or the healthy 
stress and “distress” or bad stress. Eustress occur as 
a response of the organism undergoing situations 
that provoke physiological changes that optimize its 
biological performance, for example exercise. 
Distress occurs when certain factor promotes 
physiological changes into an organism that may 
compromise organism’s integrity. Major part of 
stress research is focused on distress phase. 

The response to stress in fish is 
characterized by the stimulation of the 
hypothalamus, which results in the activation of the 
neuroendocrine system and a subsequent cascade of 
metabolic and physiological changes (Wedemeyer 
1990, Lowe & Davison 2005). These changes 
enhance the tolerance of an organism to face an 
environmental variation or an adverse situation 
while maintaining a homeostasis status (Mazeaud et 
al. 1977, Pickering, 1981). 

Under conditions of stress, the body of the 
fish emits immediate responses recognized as 
primary and secondary responses. The primary 
response is the perception of an altered state by the 
central nervous system (CNS) and the release of the 
stress hormones, cortisol and catecholamines 
(adrenaline and epinephrine) into the bloodstream by 
the endocrine system (Randall & Perry 1992). 
Secondary responses occur as a consequence of the 
released stress hormones (Barton & Iwama 1991), 
causing changes in the blood and tissue chemistry, 
e.g. an increase of plasma glucose (Barton 1997, 
Begg & Pankhurst 2004). This entire metabolic 
pathway produces a burst of energy to prepare the 
fish for an emergency situation (Rottmann et al. 
1992). 

Some plasma chemicals may be useful tools 
to evaluate the health and/or stress condition of the 
fishes (Sadler et al. 2000a, Campbell 2004, Wagner 
& Congleton 2004). Because stress has been 
reported to elevate plasma cortisol (Pottiner & 
Mosuwe 1994, Wendelaar-Bonga 1997, Pottinger et 
al. 2003, Haukenes et al. 2008) and glucose levels 
(Silbergeld 1974, Wedemeyer & Yasutake 1977, 
David et al. 2005), many researchers consider as a 
“rule of thumb” that fishes undergoing stressful 
situations exhibit plasmatic increases of cortisol and 
glucose (Hattingh 1977, Balm et al. 1989, Barcellos 

et al. 1999). In spite of the extensive use of cortisol 
and glucose levels as stress indicators, there are 
some inconsistencies in the results of various 
experiments that in some cases would be attributed 
to unknown situations. 

This is a review on the effectiveness of 
glucose and cortisol as stress indicators in fish and 
we attempt to identify possible errors within 
different scenarios and make some 
recommendations. 

Cortisol.  
Cortisol is the principal glucocorticoid 

secreted by the interrenal tissue (steroidogenic cells) 
located in the head-kidney of teleost fish (Iwama et 
al. 1999). This hormone is released by the activation 
of the hypothalamus-pituitary-interrenal axis (HPI 
axis) (Mommsen et al. 1999). When an organism 
undergoes stress conditions, the hypothalamus 
releases corticotropin-releasing factor (CRF) toward 
blood circulation. This polypeptide further 
stimulates secretion of adrenocorticotrophic 
hormone (ACTH) from the anterior pituitary gland 
(Fryer & Lederis 1986) which finally activates the 
release of cortisol by the interrenal tissue 
(Mommsen et al. 1999).  

Cholesterol is the precursor of cortisol; this 
sterol is transformed to pregnenolone by the action 
of the enzyme P450 side chain cleavage (P450SCC) 
in the inner mitochondrial membrane. Then 
pregnenolone is further converted into 11-
deoxycortisol by steroidogenic enzymes and this 
product is finally converted to cortisol by enzyme 
11b-hydroxylase (Miller 1998, Castillo et al. 2008). 

The secretion of cortisol is slower than 
catecholamines, but its effects are more prolonged 
(Gamperl et al. 1994a, b; Waring et al. 1996), 
combining mineral and glucocorticoid actions to 
restore homeostasis (Wendelaar-Bonga 1997, Maule 
et al. 1993, Colombe et al. 2000). Cortisol activates 
glycogenolysis and gluconeogenesis processes in 
fish; but also causes that chromaffin cells increase 
the release of catecholamines which further increase 
glycogenolysis and modulate cardiovascular and 
respiratory function (Reid et al. 1992, Reid et al. 
1998). This whole process increases the substrate 
levels (glucose) to produce enough energy according 
with the demand. 

Factors that can affect the intensity of 
response. The intensity of response is not always 
caused by a specific stressor in any experiment; 
instead it may be modulated or affected by alien 
factors that are not considered as direct stressors 
(Frisch & Anderson 2005) but that may further 
impact cortisol secretion (Fig. 1). Those factors that 
affect/modulate the response may be from intrinsic 
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nature when some factors depend basically on the 
genotype or phenotype of the organism and from 
extrinsic nature when response is affected by 
external factors. 

 

 
Figure 1. Briefly view of the dynamics of cortisol and 
catecholamine in the production of glucose. (+) means 
positive modulation and (–) means negative modulation. 
 

Intrinsic. Heritability is considered as a 
modulator with progeny groups of high response and 
low response showing a similar intensity of cortisol 
secretion as their ancestors (Pottinger & Carrick 
1999). Also age has been identified as one of those 
factors (Pottinger & Mosuwe 1994), for example, 
Sakakura et al. (2002) reported an increase of 
immunoreactive cortisol concentrations during the 
transition from larval to juvenile stage of yellowtail 
(Seriola quinqueradiata). Pottinger et al. (1995) 
identified sexual maturity as a factor related with the 
intensity of response in fishes. Gilmour et al. (2005) 
mentioned that cortisol response is variable even in 
salmonid fishes of the same stock and that 
subordinate organisms showed a higher response 
than dominant ones; this is in agreement with Doyon 
et al. (2003) report, where they documented that 
socially subordinate salmonids exhibit enhanced 
CRF mRNA in the preoptic area. 

Another factor that may affect results is the 
fact that in some cases cortisol is rapidly converted 
into cortisone (Kime 1978) which is significantly 
less immunoreactive than cortisol. Some authors 
have reported increases in the concentrations of 
plasma cortisone of stressed fishes (Weisbart & 
McGowan 1984, Patiño et al. 1987, Pottinger et al. 
1992). 

Extrinsic. Extrinsic factors may affect a 
variety of biochemical functions within the fish 
organism such as cortisol biosynthesis and release 
rates. Environmental color is reported to have an 
effect on cortisol secretion (Van der Salm et al. 
2004). A higher intensity of cortisol response is 
documented in Pargus pargus acclimated in black 

tanks as compared with those in gray and white 
tanks when fish were exposed to crowding stress 
(Rotllant et al. 2003).  

In some species the magnitude of the stress 
response varies with respect of a previous thermal 
acclimation or acclimatization (Strange et al. 1977, 
Stouthart et al. 1998, Lankford et al. 2003). As an 
example Koldkjær et al. (2004) reported differences 
in plasma cortisol of rainbow trout (Oncorhynchus 
mykiss) when comparing results in warm months 
versus cold months. Also Stouthart et al. (1998) 
hypothesized that the rearing temperature for eggs 
and larvae of fish can influence the induction of 
cortisol response. 

Differences in the intensity of response 
might occur in domesticated organisms as compared 
with non-domesticated ones (Jentoft et al.  
2005). Nutritional status (Pottinger 1998; Pottinger 
et al. 2003) is another factor that may affect the 
response; for instance, serotonin which is a HPI axis 
regulator increases when administered dietary 
tryptophan (serotonin precursor) (Lepage et al. 
2002, 2003). 

Reid et al. (1998) made a review about the 
adrenergic response in fish and mentioned that the 
regulation in the production of stress hormones is 
influenced by adverse internal or external conditions 
in the history of the fish (anoxia, pollution, nutritive 
stress, physical stress). This last argument can be 
explained because those organisms require energy 
and necessitate an “alteration in the capacity to 
express the adrenergic stress response”. 

The rate of cortisol clearance is another step 
in the cortisol cycle that may be influenced by 
environmental factors. Liver is the key organ for 
cortisol disposal with the hepato-biliary system as 
the main biochemical pathway for cortisol clearance 
(Wilson et al. 1998, Vijayan & Leatherland 1990). 
However the efficiency of that process is reported to 
be altered by stress, salinity, maturity, nutritional 
state, etc (Mommsen et al. 1999). 

If a modulator of response is not identified, 
experiments may provide erroneous results, thereby 
it is indispensable to know cortisol basal levels of 
any experimental species. There are species-specific 
and stressor-specific cortisol values that may serve 
as general guidelines (Barton & Imawa 1991, 
Gamperl et al. 1994b, Iwama et al. 2006) to avoid 
over or sub estimating the cortisol response (Table 
I). We suggest standardizing physiological and 
biochemical status off all experimental organisms 
previously to the beginning of any experiment. For 
instance: a prior acclimation of experimental fishes 
to laboratory conditions (temperature, dissolved 
oxygen, water quality, nutritional status, 
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photoperiod, size, weight, color and shape of 
experimental containers); organisms should be from 
the same progenies or at least from the same place of 
collection. It also has been suggested that high 
variability in response from one organism to another 
(even from the same species) may be avoided by 
using clonal groups of fishes (Plaut & Gordon 
1994). However this is a difficult task and would not 
be possible in many cases and also clonal groups 
may be only useful in specific studies, for example 
to test genetically modified organisms. 

Although these are common sense 
suggestions, sometimes these are not followed, 
leading to abnormal results. 

To illustrate this, fishes from polluted sites 
may have a different response than those acclimated 
to laboratory conditions. Organisms accustomed to 
the harassing of predators will show a weak stress 
response during the experiments as compared with 
others that thrive in environments without predators. 
There are other several situations that have an effect 
on the stress response. 

Acute and chronic stress. In experiments 
of acute stress, the cortisol response is rapid but 
regularly becomes weak or disappears some hours 
after the exposure to stress (Davis Jr. & McEntire 
2006).  

In most fishes, cortisol reaches highest 
concentration 1 hour after being stressed, and returns 
to basal levels after 6 hours (Iwama et al. 2006). 
Cortisol levels of red drum during some handling 
procedures grew rapidly, but decreased to the basal 
state within 48 hours (Robertson et al. 1987). 
Common dentex (Dentex dentex) increased its 
glucose and cortisol levels immediately after 
handling and then returned to the basal level after 8 
hours (Morales et al. 2005). Carp (Cyprinus carpio) 
increased plasma cortisol when retained in anglers´ 
keep nets but returned to basal levels within 4 hours 
(Pottinger 1998). 

It has been suggested that after stress, the 
cortisol levels of fishes return to basal levels to 
avoid tissue damage (Wendelaar-Bonga 1997). This 
damage has been observed in salmons, where high 
levels of cortisol cause death in Pacific salmon 
(Oncorhynchus spp) by tissue degeneration and 
damage of homeostatic mechanisms (Dickhoff 1989, 
Stein-Behrens & Sapolsky 1992). Thus, cortisol test 
is a good option in acute stress experiments, but it is 
indispensable to measure cortisol immediately after 
stress and over time, because a single and/or a late 
test will have a high probability to be far from the 
real response. 

In chronic-stress experiments some fish 
showed a weak increase of cortisol (Barton et al. 

2005, Fast et al. 2008) probably caused by 
exhaustion of the endocrine system as a result of 
prolonged hyperactivity (Hontela et al. 1992) or an 
habituation of the organism to that condition. For 
example, when an organism undergoes suboptimal 
conditions for a considerable period of time, the 
release of cortisol decreases because the interrenal 
tissue of stressed fishes becomes less sensitive to the 
action of ACTH or other pituitary hormones 
(Vijayan and Leatherland 1990, Mommsen et al. 
1999). This culminates in less cortisol secretion than 
expected. In consonance, Barton et al. (1987) 
observed that cortisol levels of juvenile rainbow 
trout increased in acute exposure to stress, but 
returned to basal after a chronic exposure. 

Although there are exceptions (Gil-Barcellos 
et al. 2006, Ramsay 2006), because in the absence of 
the ACTH some other pituitary hormones can 
increase the secretion of cortisol (Wilson et al. 
1998). 

For instance, different hormones such as 
alpha-melanocyte-stimulating hormone (MSH), 
endorphin from the pars intermedia (PI) (Lamers et 
al. 1992, 1994; Metz et al. 2005) and some 
sympathetic nerve fibers (Arends et al. 1999) have 
been implicated in cortisol release during the chronic 
phase in fishes, functioning as an emergency system. 
However if the sub-optimal condition persists this 
system may be also depleted. 

Therefore, cortisol response would not be a 
sufficient but rather a less reliable tool to examine 
stress status after chronic stress experiments. 

Previous experience to stress conditions 
should also be considered as a chronic exposure, 
which is another source of error that appears when 
the fish has been acclimated to conditions of stress 
or was acclimatizated to a certain stress factor in its 
environment that the collector did not notice. Barton 
et al. (2005) observed a less intense response of fish 
acclimated to chronic confinement (70 ng mL-1) than 
fish acclimated to low density (139 ng mL-1) when 
submitted both to acute handling stress. Rainbow 
trout (O. mykiss) submitted to a 6-week exercise 
program showed less cortisol concentration than 
unexercised trout when both were in rest condition 
(Woodward & Smith 1985). Pickering & Pottinger 
(1987b) hypothesized an acclimation of the HPI axis 
assessed by changes in plasma cortisol levels. 
Perhaps this means that the fish used to stress 
require a lesser amount of cortisol to reach the same 
quantity of energy (glucose).  

On the other hand, Selye (1936) reported 
that during the first 6-48 hours after an organism 
undergoes adverse conditions it suffers changes in 
blood chemicals (cortisol increase), which is called 
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Walleyes  Stizostedion vitreum  
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“general alarm reaction” (GAR). If those conditions 
continue, blood chemicals return to normal (general 
adaptation syndrome) due to some modifications in 

the metabolism. But, if the stressful environment 
prevails, the GAR symptoms appear again caused by 
energy depletion (Fig. 2). 
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Figure 2. Biochemical responses of fishes undergoing chronic stress (Selye 1936). The responses change with respect 
to time; the fish modifies and regulate the biochemical processes to restore the homeostasis (GAR), but the duration of 
this mechanism depends on the availability of energy reserves. 
 

When Pickering & Pottinger (1987b) 
experimented with salmonids under crowding 
conditions, they concluded that changes in cellular 
composition were better stress indicators than 
plasma cortisol levels. Likewise we agree with those 
authors and recommend that cortisol may be a 
primary stress indicator in acute rather than chronic 
experiments. However cortisol may be reported as 
complementary data of chronic experiments. 

Chemicals. Several pollutants can stress the 
fish, activating alarm reactions producing a primary 
and a secondary response (Brown 1993). In Atlantic 
salmon (Salmo salar), cortisol and glucose levels 
increased after being exposed to high aluminum 
concentrations (Ytrestøyl et al. 2001). Roche & 
Bogué (1996) argued that one of the most frequent 
responses in fish blood to specific chemical 
intoxication is cortisolemia. 

Nevertheless Wendelaar-Bonga (1997) 
explained that “the exposure to chemicals may 
directly compromise the stress response by 
interfering with specific neuroendocrine control 

mechanisms”. Some chemicals affect metabolic 
pathways which eventually will influence neural and 
interrenal tissue functions. In agreement with this 
finding, it has been observed that cortisol secretion 

can be affected by environmental contaminants 
because xenobiotic chemicals such as DDT are 
toxicants targeting multiple sites along the HPI axis, 
resulting in secretion of less bioactive ACTH, which 
in turn will promote a minor cortisol release from 
the interrenal tissue (Aluru et al. 2004; Hontela 
1997). 

Several studies have corroborated the 
impairment in the cortisol synthesis and secretion 
due the action of chemicals. Gravel & Vijayan 
(2006) studied the impacts of three pharmaceuticals 
(acetaminophen, ibuprofen, and salicylic acid) in 
rainbow trout and supported the hypothesis that 
these pharmaceuticals disrupt steroidogenesis in fish 
interrenal tissue. These findings were also tested in 
vitro and observed that salicylic acid produced a 
depression of ACTH stimulation in cortisol secretion 
and a lower gene expression of steroidogenic acute 
regulatory (StAR) protein, which is involved in 
steroidogenesis of cortisol (Hontela 2006); the same 
author also stated that StAR protein may be a 
sensitive target of many environmental pollutants, 
ranging from pesticides to pharmaceuticals. Also, 
the expression of StAR and P450SCC decreased in 
fish exposed to xenobiotics because they bind aryl 
hydrocarbon–receptor (AhR), a cytosolic ligand-
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induced transcription factor, with a consequent 
depress of steroidogenic enzyme activity and finally 
altering the cortisol production and secretion (Aluru 
et al. 2005). Therefore many pollutants halt cortisol 
secretion and even if the fish is under stress this will 
probably not be reflected in cortisol response. 

Pickering & Pottinger (1987a) observed that 
the exposure of brown trout (Salmo trutta) to poor 
quality water resulted in a 50% suppression of the 
cortisol release. Brodeur et al. (1997) reported an 
impairment of the cortisol stress-response in the 
yellow perch (Perca flavescens) from polluted sites. 
Langiano & Martínez (2008) did not observed any 
change in plasma cortisol of neotropical fish 
Prochilodus lineatus when exposed to different 
concentrations of a glyphosphate-based herbicide at 
different periods, while difference in glucose levels 
were assessed.  

These results suggest that the interrenal 
response may be contaminant specific. Thus the 
estimation of cortisol as a toxic stress indicator may 
be in doubt, and if no response is observed in fishes 
under obvious stressful conditions, then cortisol 
should be replaced by more useful tests to evaluate 
the effect of any chemical compound on any species. 
To mention some examples: medium lethal dose 
(LD50) (Sprague 1969), behavior (Sprague 1971), 
histopathological indicators (Schwaiger et al. 1997), 
blood parameters (Iwama et al. 1995) or enzymatic 
activity (oxidative stress enzymes) (Pedrajas et al. 
1995, Gorbi & Regoli 2004). 

Anesthesia and Sampling. When sampling 
cortisol in fishes, it is necessary to handle the 
organisms. This handling eventually aware the 
organism and provokes an alarm reaction altering 
the level of pituitary hormones and thus increases 
the possibilities to obtain less precise results. 
Anesthetics have been used to reduce pain and 
awareness, and thus avoid metabolism enhancement 
(increase of cortisol or other parameters) in fish. To 
this respect, Small (2003) documented that 
anesthetics reduce or block the activation of HPI 
axis, so blood chemicals would not be altered at 
sampling process. 

However, Flodmark et al. (2002) mentioned 
that some anesthetics per se (i.e. tricaine and 2-
phenoxyethanol) are stressful and may raise plasma 
cortisol. Similar conclusion was assessed by Barton 
& Peter (1982) when observed that 2-
phenoxiethanol and tricaine increased blood cortisol 
in the trout Salmo gairdneri. A possible explanation 
for these abnormal results may be that oxygen 
concentration in water significantly decreases when 
an anesthetic is added and HPI axis is activated 
rather than blocked (Bolasina 2006). Palić et al. 

(2006) evaluated the effectiveness of three 
anesthetics (MS 222, metomidate and enguenol) in 
fathead minnows, concluding that MS 222 did not 
block the activation of HPI axis, instead they had 
better results using metomidate. Although 2-
phenoxiethanol and tricaine are the two most used 
anesthetics, we do not recommend their use for 
cortisol and glucose evaluation because of the 
possibility of erroneous increased results.  

Some anesthetics though have been shown 
to halt secretion of cortisol. Clove oil showed to be a 
strong blocker of cortisol increase in channel catfish 
(Ictalurus punctatus) (Small 2003). In contrast, it 
was documented that clove oil did not block cortisol 
secretion in stressed sea bream (Pagrus major).  

Isoeugenol was shown to diminish 60% 
blood cortisol in channel catfish exposed to 
confinement, whereas metomidate showed greater 
effectiveness in blocking cortisol release under high 
ammonium concentrations (Small 2004). Olsen et al. 
(1995) intraperinoteally injected ACTH into Atlantic 
salmon to promote cortisol secretion; they reported 
that metomidate blocked cortisol release, whilst high 
cortisol levels were found when using tricaine (MS 
222). Metyrapone has also shown successful results 
as a cortisol synthesis blocker (Hopkins et al. 1995). 
However, metyrapone and etomidate halt cortisol 
secretion by inhibiting 11β-hydroxylase, a key 
enzyme in the conversion of 11-deoxycortisol to 
cortisol (Dang & Trainer 2007). This hindrance in 
the biochemical pathway of cortisol generation may 
compromise physiological status of organisms 
limiting adaptation capacity, and perhaps leading 
them to death. In this case, these anesthetics may be 
used if a single sample of every fish is required, for 
example when fishes are sacrificed while sampling 
(heart puncture), such as the case of small size 
fishes. But, if more than one sample (from caudal 
vein) of every fish is needed or the investigator does 
not intend to sacrifice the animal (animal 
management ethics), then it is not recommended to 
use metyrapone nor isoenguenol, and maybe other 
anesthetics constitute better options, perhaps 
sacrificing precision for the survival of the 
experimental organisms. 

Results are very contrasting, the efficacy of 
anesthetics seems to be species-specific and prior 
tests would be required and report how much of the 
cortisol response is due to anesthetic and how much 
is due to the stressor. 

It is also worth to mention that some of the 
above studies only tested a single dose of anesthetic. 
Thus it is unknown if the kind of anesthetic per se is 
inefficient or the dose was not adequate. In a recent 
experiment Welker et al. (2007) tested four 
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concentrations of MS 222 (0, 90, 120 and 180mg·l-1) 
in the channel catfish and reported that the highest 
cortisol level was found in the treatment without 
anesthetic (0mg·l-1), but the treatment with the 
highest level of anesthetic (180mg·l-1) also increased 
the cortisol concentrations. The best results were 
obtained with the dose of 90mg·l-1. Therefore, prior 
tests should consider not only anesthetics 
themselves, but also explore the adequate dose. Also 
it is important to establish the time at which samples 
should be taken, because apparently the time after 
applying the anesthetic has an effect on the secretion 
of cortisol. Welker et al. (2007) found that the MS 
222 effectively blocked cortisol secretion of channel 
catfish during the first 20 minutes after 
anesthetizing, but the levels tended to increase after 
25 minutes.  

Water temperature is another point of 
concern at the time of administering any anesthetic. 
Park et al. (2008) proved the efficacy of clove oil in 
anesthetizing fishes and their physiological 
responses when administered it at different 
concentrations and temperatures, finding that the 
optimal dose (lower cortisol and glucose secretion) 
decreased at higher temperatures. 

Non invasive methods. Non invasive 
methods have been used as indirect indicators of 
stress. In 1994, Sorensen & Scott found that goldfish 
released steroid to the water, and that one of those 
steroids was cortisol. After that, the measurement of 
cortisol in water to evaluate stress status in fish was 
proposed (Scott et al. 2001). Ellis et al. (2004) 
measured free cortisol released into water by 
rainbow trout. Lower et al. (2005) tagged two 
species of fishes, the common carp (Cyprinus 
carpio) and the rutilus (Rutilus rutilus) reporting that 
cortisol in water increased from 70 to 400 and from 
170 to 2000 pg/g/h respectively. 

This method has the advantage that fishes 
are not stressed up when sampling due to null or 
minimal intervention. Moreover there is no necessity 
to bleed and hurt the animal to measure cortisol. 
However Scott & Ellis (2007) pointed out that in 
some cases cortisol in water is too low to be 
measured by conventional methods, being necessary 
to extract and concentrate cortisol from water, 
because the highest proportion of cortisol is 
eliminated through hepatic processes, while renal 
and branchial routes play a secondary role in steroid 
elimination (Idler & Truscott 1972, Butler 1973). 
Scott & Ellis also suggested that only free cortisol 
and not conjugated steroid fractions (sulphated and 
glucuronidated steroids) have to be measured to 
evaluate stress response, because “the concentration 
of free steroid in the water equates to the 

concentration of ‘physiologically active’ steroid in 
the plasma, which is very close to the moment in 
time that the sample is taken. 

This method also faces the problem of fish 
mass and water flow rate, because cortisol secretion 
is in direct proportion to fish biomass and flow rate 
modifies cortisol concentration. Thus, very similar 
biomasses are required in every experimental unit, 
together with calculations considering flow rate (see 
Scott & Ellis 2007). Furthermore, the method can 
not be used to measure individual cortisol levels, 
unless tests of single organisms are carried out. 
Despite those related problems, this method emerges 
as an interesting alternative to substitute cortisol 
measurements in plasma. 

Another non invasive method to measure 
cortisol is to measure it in feces. This procedure has 
been reported by some authors, but with limited 
success (Oliveira et al. 1999, Turner et al. 2003). 
Also the major part of free cortisol releasing occurs 
through the gills (Ellis et al. 2005). Despite the 
advantage of being non intrusive, this method does 
not have yet the precision of direct evaluations 
(plasma cortisol levels; Huntingford et al. 2006) or 
water cortisol measurement for what its use is of 
limited practical value. 

Glucose.  
Glucose is a carbohydrate that has a major 

role in the bioenergetics of animals, being 
transformed to chemical energy (ATP), which in 
turn can be expressed as mechanical energy (Lucas 
1996). 

In suboptimum or stressful conditions 
(internal or external) the chromaffin cells release 
catecholamine hormones, adrenaline and 
noradrenaline toward blood circulation (Reid et al. 
1998). Those stress hormones in conjunction with 
cortisol mobilize and elevate glucose production in 
fish through glucogenesis and glycogenolysis 
pathways (Iwama et al. 1999) to cope with the 
energy demand produced by the stressor for the 
“fight of flight” reaction. This glucose production is 
mostly mediated by the action of cortisol which 
stimulates liver gluconeogenesis and also halts 
peripheral sugar uptake (Wedemeyer et al. 1990). 
Glucose is then released (from liver and muscle) 
toward blood circulation and enters into cells 
through the insulin action (Nelson & Cox 2005). 

Regardless of the wide use of glucose as an 
indicator of stress, some authors (Mommsen et al. 
1999, Flodmark et al. 2001) emphasized that care 
has to be taken when using plasma glucose as the 
only indicator. It has been reported that glucose 
content is a less precise indicator of stress than 
cortisol (Wedemeyer et al. 1990, Pottinger 1998). 
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Mommsen et al. (1999) were skeptical about the use 
of glucose as a stress indicator, whereas Simontacchi 
et al. (2008) stated that glucose and cortisol “cannot 
be considered itself as reliable stress indicators”. 

Factors that affect the intensity of 
response. Similar to cortisol, some factors can 
indirectly alter the response of glucose levels in 
blood. Vijayan & Moon (1994) suggests that “the 
rearing history including nutritional status may 
affect the stress response and glucose clearance 
rates”. That affirmation is supported by other 
authors who concluded that blood glucose results 
have to be interpreted with care, taking into account 
extrinsic factors such as diet, life stage, time since 
last feeding and season of the year, etc., because 
they may affect liver glycogen stores (Nakano & 
Tomlinson 1967, Barton et al. 1988, McLeay 1977, 
Wedemeyer et al. 1990). 

Nutritional status is a factor that can have an 
effect in the glucose response. The intake of diets 
with different lipid and protein content resulted in 
different responses of blood glucose of the orange-
spotted Grouper (Epinephelus coioides) when it was 
exposed to cold stress (Cheng et al. 2006). The 
channel catfish under fasting conditions evidenced 
hyperglycemia after 30 days of experiment (22.8 
versus 4.7 ng·ml-1 in the control group) (Peterson & 
Small 2004). 

Glucose also varies between species and 
stage of development (Iwama et al. 2004, Hemre et 
al. 2002). Woodward & Strange (1987) observed 
that wild rainbow trout experienced a cortisol 
increase 3 times greater than hatchery fish when 
exposed to net confinement and electroshock. To 
avoid erroneous results we also suggest prior 
standardization of organisms before any stress 
experiment. 

On the other hand as previously stated, 
stress hormones such as catecholamines, cortisol  
and others may be influenced by internal or  
external conditions in the history of the fish  
(anoxia, pollution, nutritive stress, physical stress) 
(Reid et al. 1998). Cortisol is known to increase 
blood glucose, herein a disruption in cortisol 
secretion may conclude in an altered glucose 
response. 

However there have been observed increases 
in blood glucose whilst cortisol secretion is impaired 
(Costas et al. 2008). Some authors suggest that this 
increase in glucose may be attributed to a different 
mechanism of the action of cortisol, (catecholamine 
action for instance) (Vijayan et al. 1991, 1994; 
Trenzado et al. 2006). To this respect, it has been 
demonstrated that catecholamines itself can increase 
sugar levels (Wagner et al. 2003). Catecholamines 

promote the phosphorylation of the enzyme 
glycogen phosphorylase which results in a 
glycogenolysis increase (Vijayan & Moon 1992); 
then, if catecholamine production or secretion is 
modified also glucose response may be affected. 
When Nilsson (1989) exposed crucian carp 
(Carassius carassius) to anoxic conditions (76-169 
h), a significantly decrease in stored noradrenaline in 
kidney head was observed. However Reid et al. 
(1998) also concluded that those effects are 
reversible under normoxic conditions. 

As in the cortisol case it is indispensable to 
know basal or pre-stress levels of the species to be 
studied (Table II). 

Energy demand. As mentioned, sugar 
levels increase during stress, however some authors 
reported a weak rise of glucose (Davis Jr. & 
McEntire 2006), others found no change (Rotllant & 
Tort 1997, Jentoft et al. 2005), and even a decrease 
(Wood et al. 1990). 

Sometimes no significant changes in plasma 
glucose may be observed, because under stress the 
fish is rapidly consuming the energetic substrates 
generated (glucose) since the main function of the 
central nervous system (CNS) is to maintain 
homeostasis. West et al. (1993) argued that during 
peak activity glucose use can increase by almost 30-
fold. However it is possible that fish exposed to 
chronic stress suffer substrate depletion that leads to 
a decrease on plasma glucose (Fig. 2). 

The freshwater fish rohu (Labeo rohita) 
exposed to high fenvalerate (an insecticide) 
concentrations, presented the maximum glucose 
level in the fourth day of exposure, but the level 
began to decrease over time until depleted (David et 
al. 2005). From those results, a weak or no change in 
plasma glucose may be attributed to a high energy 
demand so that glucose cannot be accumulated 
(acute experiments) or the organism be habituated 
(chronic experiments). A decrease of glucose is 
linked to depletion of reserve energy. If it is not part 
of the experiment, fishes should not be exercised 
during experimental or acclimation period to avoid 
an increase in energy demand; this caution will 
reduce the risk to obtain abnormal results, 
nonetheless glucose response is still more variable 
than cortisol response. 

Rapid measurements. Normally the 
increase of glucose in plasma is not as rapid as for 
cortisol. Many researchers documented an increase 
of glucose minutes or days after the stress (Pratap & 
Wendelaar-Bonga 1990, Hemre & Krogdahl 1996, 
Barcellos et al. 1999, Falahatkar & Barton 2007) 
because cortisol triggers glucose production. 
Measuring glucose just after an acute experiment is 
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Table II. Plasma glucose values of different species of fishes before and after being stressed. In every line is indicated if the kind of exposure to the 
stressor was acute or chronic. When Chronic/Acute appears, it indicates that the fish was first acclimated to any condition and thereafter exposed to an 
acute stressor. 

References 

Siikavuopio &  Sæther 
(2006) 
Lowe & Davison (2005) 

Welker et al. (2007) 

Frisch & Anderson (2005) 

 

 

Lowe & Davison (2005) 

Urbinati & Carneiro (2006) 

Barreto & Volpato (2006) 

Barreto & Volpato (2006) 

Miller et al. (2007) 

Gagnon et al. (2006) 

Davis & Peterson (2006) 

Zuccarelli et al. (2008) 

Exposure 

Chronic 

Chronic 

Acute 

Chronic 

 

 

Chronic 

Acute 

Acute 

Acute 

Acute 

Chronic/Acute 

Chronic/Acute 

Acute 

Glucose (mmol/l) 

Poststress 

0.23 

10 

2.8 

 

7.9 

7.4 

7.5 

10 

6.4 

6.7 

9 

7.2 

10.5 

1.7 

Prestress 

0.17 

4.5 

1.7 

 

1.6 

1.9 

1.5 

2.8 

2.2 

1.9 

4.2 

5.1 

6.1 

1.6 

Stressor 

Nitrite exposure 

Temperature 

Handling 

Capture and handling 

 

 

Temperature 

Handling and transportation 

Electroshock 

Social stressor 

Pollutant 

Copper and air exposure 

Temperature and confinement 

Air exposure 

Species 

Atlantic cod  Gadus morhua 

Bald notothen  Pagothenia borchgrevinki 

Channel catfish Ictalurus punctatus 

Coral trout 

Plectropomus maculatus 

Plectropomus leopardus 

Emerald rockcod  Trematomus bernacchii 

Matrinxã   Brycon amazonicus 

Nile tilapia  Oreochromis niloticus 

Nile tilapia 

Rainbow trout  Oncorhynchus mykiss 

Rainbow trout 

Sunshine bass Morone chrysops x saxatilis 

White sturgeon  Acipenser transmontanus 
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considered a source of error, because there is the 
probability of not measuring any change. For 
instance, Perez-Casanova et al. (2008) increased 
water temperature of Atlantic cod (Gadus morhua) 
at a rate of 2°C·h-1 and measured glucose every 2°C, 
not finding statistical differences from 10 to 24°C (a 
critical temperature). These results appeared 
probably because the change in blood glucose levels 
might occurrs  minutes, hours or even days later 
(Langiano & Martínez 2008). Thus single measures 
of glucose are not a real indicator, rather it is 
recommended to measure glucose over time as in the 
cortisol case. 

For chronic experiments, the acclimation 
period should be long enough to ensure that in case 
of observing a null or weak glucose response, that 
response is not caused by the general adaptation 
syndrome (Fig. 2). Some authors suggest 3 weeks of 
acclimation for laboratory experiments (Houston 
1982; Johnsson et al. 2003), however this is not a 
rule and may vary among species and stressors. Fast 
et al. (2008) did not observe a rise of glucose in the 
Atlantic salmon during acute experiments, but 
reported an increase when the fish were exposed to 
prolonged stress. A 3-week period of crowding 
stress elevated cortisol and glucose in gilthead 
seabream (Sparus auratus) (Tort et al. 1996). 
Therefore, unlike in acute experiments, glucose can 
be measured immediately after a chronic exposure to 
stressful conditions. 

Blood samples can be extracted during the 
chronic experiments, but if the experimental units 
are limited and all the samples have to be taken from 
the same tanks, it is not recommendable to measure 
cortisol over time, because the consequent handling 
and manipulation of organisms may lead to 
erroneous results in the future samples. 
Nevertheless, if it is necessary to measure glucose 
over time, it is recommended that sampling is not 
very frequent, while a limited number of samplings 
should be established. 

Anesthesia and sampling. Some 
irregularities have been reported in glucose response 
when anesthetics are used before sampling. The 
ideal role of anesthetics is to minimize fish stress 
response, prevent any negative impact on 
performance and thus measure real values of glucose 
or other blood components (Pickering 1998). 
Nevertheless, some anesthetics do not fit with that 
role. Ortuño et al. (2002) tested four anesthetics (MS 
222, benzocaine, 2-phenoxytehanol and quinaldine) 
in gilthead seabream and reported that basal glucose 
level was 3.6 mmol·l-1 and increased to 5.6, 11.1, 
11.9 and 16.4 mmol·l-1 when exposed to MS 222, 
benzocaine, 2-phenoxytehanol and quinaldine 

respectively; also immune response was depressed 
by benzocaine and 2-phenoxyethanol, but not by MS 
222 or quinaldine. In another experiment, Iversen et 
al. (2003) exposed Atlantic salmon to other four 
anesthetics (metomidate, clove oil, Aqui-S™ and 
Benzoak®) not finding any increase in plasma 
glucose. On the other hand, Velíšek et al. (2005) 
reported a significant increase in rainbow trout 
glucose when anesthetized with clove oil. Also clove 
oil and MS 222 blocked cortisol secretion but 
increased glucose in another experiment with 
rainbow trout (Wagner et al. 2003). Those 
controversial results suggest that perhaps anesthetic 
efficacy in halting glucose increase is species-
dependant and also previous tests may be required 
(see Anesthesia and sampling in cortisol section). 

Other stress indicators.  
Previously we documented that many 

studies utilized cortisol and glucose as sole stress 
indicators of stress in fish; however regarding the 
several factors that can affect these responses give 
us to consider that cortisol and glucose are not 
enough as stress indicators. Iwama et al. (2004) 
argued that “none of the current indicators of stress, 
including the stress hormones, are 100% suitable in 
reflecting stressed states in fish”; in consonance with 
that, it is recommendable to complement cortisol 
and glucose with other stress indicators to establish a 
more complete profile of the experimental organism. 

In the case of cortisol it is known that in 
some fishes a small increase in plasma cortisol leads 
to an alteration in amino acid metabolism (Hopkins 
et al. 1995), for this reason it is plausible to consider 
that the activity of those enzymes involved in amino 
acid metabolism would be a complement or also a 
more accurate indicators of stress even if cortisol 
response is weak. Glutamine synthase for example, 
has been observed to increase with small response of 
cortisol (Reid et al. 1998). 

Otherwise, it is possible to measure 
intermediate enzymes of glycolysis (phosphoenol 
pyruvate carboxykinase, fructose 1,6-biphosphate, 
glucose 6-phosphatase), since cortisol and 
catecholamines positively influence that process. For 
instance, Vijayan et al. (2003) exposed rainbow 
trout to cortisol treatments and reported an increase 
in the abundance of phosphoenolpyruvate 
carboxykinase (PEPCK) mRNA. Dziewulska-
Szwajkowska et al. (2003) documented an increase 
of glucose 6-phosphatase when injected a high dose 
of cortisol in the common carp. 

However, there are other important 
parameters that should be taken into account to 
study stress. For instance catecholamines are 
recognized as a stress indicator; adverse conditions 
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activates the HPI axis and catecholamines are 
released into blood stream (Iwama 2007). 
Melanocyte stimulating hormone (α-MSH) is a 
peptide produced in the pituitary cells of several 
fishes (Kawauchi et al. 1984; Lamers et al. 1991) 
and proved to increase in stressful conditions 
(Arends et al. 1999, 2000). Lactate is a chemical 
compound that plays a role in anaerobic metabolism 
of animals, produced from pyruvate via the enzyme 
lactate dehydrogenase during exercise and is 
considered as a stress indicator in fishes because its 
levels are enhanced in under adverse situations 
(Thomas et al. 1999; Grutter & Pankhurst 2000). 

Eventually, fish also respond at the cellular 
level to stressors. This response comprises some 
protein changes, for example an enhancement in 
heat shock protein (hsps) synthesis (Iwama et al. 
1998, 2004). In cells of stressed organisms there is 
an increase in the production of hsps which are 
required to assist the folding of nascent polypeptide 
chains, act as a molecular chaperone and mediate the 
repair and degradation of altered or denatured 
proteins to maintain homeostasis. 

On the other hand, different non-invasive 
methods can be used to complement the biochemical 
and molecular parameters. The ventilation rate and 
oxygen consumption represent an adequate 
alternative because they are indicators of the 
metabolic rate due to high activity, stress, etc. 
However, Alvaenga & Volpato (1995) stated that 
metabolic differences derived from social stress 
usually show data with high variance, masking 
important differences among treatments and that the 
oxygen consumption and ventilation rate can 
complement the stress studies. This method is very 
simple and if the water is clear enough the 
measurements can simply be determined visually. It 
has been observed that the ventilation rate and 
oxygen consumption increase with different 
stressors such as, presence of predators, air 
exposure, light intensity, etc. (Brown et al. 2005, 
Sager et al. 2000, Thompson et al. 2008). However 
despite ventilation rate is a very sensitive test, it has 
the limitation that the severity of any stimulus or 
stressor is not reflected in this parameter (Barreto & 
Volpato 2004) and thus, it is only useful to indicate 
if the fish is being stressed or not, but not how much. 

Other non-invasive methods are the 
measurement of the excretion of nitrogenous 
compounds such as ammonia and urea, gas 
exchange (carbon dioxide) and others (Walsh et al. 
1994, Evans et al. 2003). These non-invasive 
methods are good candidates to complement the 
cortisol and glucose as stress indicators, although 
they have the same limitation as the non-invasive 

methods to measure cortisol (see above). 
These suggestions are not a rule of thumb 

and may be replaced or complemented with others, 
depending on the nature of the stressor. In that 
manner, false results obtained by using any 
particular stress test may be validated or contrasted 
with others. 

 
Conclusions 

Cortisol and glucose cannot be eliminated 
from the stress indicators list, but due to their high 
variability they must be complemented with other 
measurements such as other stress hormones, hsps, 
blood-cell counts (preferably in chronic 
experiments), non-invasive methods and/or others, 
in order to have a more complete profile about the 
stress status of any fish. 

Cortisol may be useful only in acute stress 
experiments and monitored throughout time. To be 
used as stress indicator, the physiological status of 
organisms should be standardized. 

Anesthetics efficiency shows many 
inconsistencies and there is controversy about the 
convenience to use an effective metabolism blocker 
anesthetic or a non harmful anesthetic due to animal 
management ethics. It is important, as long as 
possible, to select an adequate anesthetic according 
to the species, which effectively blocks metabolism 
while causing a minimum damage to the animal 
integrity. The dose of the anesthetic and the water of 
temperature are subjects of concern. 

Non invasive methods such as measuring 
cortisol in water are a suitable alternative to avoid 
anesthetic problems. 

Glucose measurements show many 
inconsistencies and should be a complement of 
stress tests rather than a main indicator. It also can 
be used as a tool to provide a point of reference for a 
particular species.  

Results may be more realistic if 
standardization of organisms and experimental 
conditions are done, and organisms are not exercised 
prior sampling blood. 

Repeated glucose measures have to be done 
during or after acute exposures, but during chronic 
experiments the sampling should not be very 
frequent, because the handling and manipulation of 
organisms may affect the future measurements. 

In using both cortisol and glucose as stress 
indicators the researcher needs to be careful to 
identify possible situations or factors that may 
influence the stress response of the fish as long as 
possible and to be certain they are not part of the 
experiment. On the other hand, the use of these two 
indicators as pollution or toxic stress indicators is 
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not adequate, rather behavior and oxidative stress 
tests are recommended. 

Finally in the scientific task of monitoring 
stress, the reliability of the results may be 
significantly increased if adequate and enough 
number of tests is carried out. 
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